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Abstract. We discuss the Luttinger liquid behaviour of a semiconducting quantum wire. We show that the
measured value of the bulk critical exponent, αbulk, for the tunneling density of states can be easily calcu-
lated. Then, the problem of the transport through a quantum dot formed by two quantum point contacts
along the quantum wire, weakly coupled to spinless Tomonaga-Luttinger liquids is studied, including the
action of a strong transverse magnetic field B. The known magnetic dependent peaks of the conductance,
G(B), in the ballistic regime at a very low temperature, T , have to be reflected also in the transport at
higher T and in different regimes. The temperature dependence of the maximum Gmax of the conductance
peak, according to the Correlated Sequential Tunneling theory, yields the power law Gmax ∝ T 2αend−1,
with the critical exponent, αend, strongly reduced by B. This behaviour suggests the use of a similar device
as a magnetic field modulated transistor.

PACS. 73.21.Hb Quantum wires – 71.10.Pm Fermions in reduced dimensions (anyons, composite fermions,
Luttinger liquid, etc.) – 73.21.La Quantum dots

1 Introduction

Progress in semiconductor device fabrication and carbon
technology allowed for the construction of several low-
dimensional structures at the nanometric scale, and many
novel transport phenomena have been revealed.

The electron-electron (e-e) correlation effects, usually
negligible in three-dimensional devices, attract consider-
able interest, because of the dominant role which they play
in one dimension, by determining the physical properties
of a one dimensional (1D) metal.

The main consequence of the e-e Coulomb repulsive in-
teraction in 1D systems of interacting electrons is the for-
mation of a Tomonaga-Luttinger liquid (TLl) with proper-
ties that are dramatically different from the ones of usual
metals with a Fermi liquid of electrons [1–3].

Because of the e-e interaction, in the TLl Landau
quasiparticles are unstable and the low-energy excitation
is achieved by exciting an infinite number of plasmons (col-
lective electron-hole pair modes), making the transport
intrinsically different from that of a Fermi liquid. Hence,
it follows a power-law dependence of physical quantities,
such as the tunneling density of states (TDOS), as a func-
tion of the energy or the temperature.
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Transport in 1D – Thus, the transport through 1D de-
vices attracts considerable interest, because it displays a
power-law zero-bias anomaly (ZBA) for the conduction.
The tunneling conductance, G, reflects the power law de-
pendence of the DOS in a small bias experiment [4]

G = dI/dV ∝ T αbulk , (1)

for eVb � kBT , where Vb is the bias voltage, T is the
temperature and kB is Boltzmann’s constant. Many the-
oretical works and experiments, during the last decade,
concentrated on the power-law behavior of the electron
tunneling by analyzing quantum Hall edge systems [4–6],
carbon nanotubes (CNs) [7,8], and semiconductor quan-
tum wires (QWs) [9,10].

The bulk critical exponent can be obtained in several
different ways [3] and has the form

αbulk =
1
4

(
K +

1
K

− 2
)

. (2)

If we follow the RG approach [11–13] for the unscreened
e-e interaction we obtain

√
1 +

U0(qc, B)
(2πvF )

=
1
K

, (3)
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where vF is the Fermi velocity and U0(p, B) corresponds
to the Fourier transform of the 1D e-e interaction poten-
tial, also depending on the magnetic field B. Thus K is a
function of the interaction strength (K < 1 corresponding
to repulsive interaction) while qc = 2π/L is the natural
infrared cut-off depending on the longitudinal length of
the quasi 1D device.

The power-law behaviour characterizes also the ther-
mal dependence of G when an impurity is present along
the 1D devices. The theoretical approach to the presence
of obstacles mixes two theories corresponding to the single
particle scattering and the TLl theory of interacting elec-
trons. In fact the presence of a barrier is usually modeled
by a potential barrier VB(r) and the single particle scat-
tering gives the transmission, probability, |t|2, depending
in general on the single particle energy ε. Following ref-
erence [14], we can proceed to the RG analysis which, in
the limit of Strong Barrier, gives the conductance, G, as
a function of the temperature and |t| i.e.

G ∝ |t(ε, T )|2 ≡ |t(ε)|2T 2αend . (4)

Here we introduced a second critical exponent,

αend = (1/K − 1), (5)

also depending on K.
Experiments [15,16] show transport through an intrin-

sic quantum dot (QD) formed by a double barrier within
a 1D electron system, allowing for the study of the reso-
nant or sequential tunneling. The linear conductance typ-
ically displays a sequence of peaks, when the gate voltage,
Vg, increases. Since the initial theoretical work on this
topic, [4,17,18] the double-barrier problem in the absence
of a magnetic field in a TLl has attracted a significant
amount of attention among theorists [19–26]. The 1D na-
ture of the correlated electrons is responsible for the dif-
ferences with respect to the quantum Coulomb blockade
theory for conventional, e.g., semiconducting QDs [27]. In
the (Uncorrelated) Sequential Tunneling (UST) approx-
imation the temperature dependence of the maxima of
those peaks follows the power law [20]

Gmax ∝ T αend−1, (6)

with αend being the DOS exponent for tunneling into the
end of a TLl. However, recent experiments [15] suggest a
different power law

Gmax ∝ T αend−end−1, (7)

with αend−end = 2αend. This result follows from the Cor-
related Sequential Tunneling (CST) theory typical for tun-
neling between the ends of two TLls.

Quasi 1D devices – Semiconductor QWs are quasi 1D
devices (having a width smaller than 1000 Å [28] and a
length of some microns), where the electron waves are in
some ways analogous to electromagnetic waves in waveg-
uides. In these devices the electrons are confined to a nar-
row 1D channel, with the motion perpendicular to the
channel quantum mechanically frozen out. Such wires can

be fabricated using modern semiconductor technologies,
such as electron beam lithography and cleaved edge over-
growth.

QWs are usually made at the interface of different
thin semiconducting layers (typically GaAs: AlGaAs) het-
erojunction, where a quasi two dimensional electron gas
(2DEG) can be formed by etching the heterojunction [28].

In a recent experiment [29] on long nanowires of degen-
erate semiconductor InSb (with a diameter around 50 Å
and a length of 0.1–1 mm) a zero-field electrical conduc-
tion was observed, over a temperature range 1.5–350 K,
as a power function of the temperature with the typical
exponent αBulk ≈ 4. This value is about 10 times larger
than the one measured in CNs, and the explanation of the
ratio αQW /αCN ≈ 10 is the first result of this paper.

Magnetic field effects – Recently we already discussed
the effects of a strong transverse magnetic field in both
QWs [30], by focusing on the case of a very short range e-
e interaction, and large radius CNs [31] for an unscreened
Coulomb interaction, by obtaining results in agreement
with the experimental data [32]. We explained this be-
haviour [30,31] by discussing how the presence of a mag-
netic field produces the rescaling of all repulsive terms of
the interaction between electrons, with a strong reduction
of the backward scattering due to the edge localization of
the electrons.

Impurities, QPCs and Intrinsic QD – The magnetic
induced localization of the electrons should have some in-
teresting effects also on the backward scattering, due to
the presence of one or more obstacles along the QW, and
hence on the corresponding conductance, G [30]. Thus
the main focus of our paper is to analyze two barriers
along a quasi 1D device (e.g. two quantum point contacts
(QPCs) [28] at a fixed distance d in a semiconductor QWs)
forming an intrinsic QD, under the action of a transverse
magnetic field. QPCs are constrictions defined in the plane
of a 2DEG, with a width of the order of the electron Fermi
wavelength and a length much smaller than the elastic
mean free path. QPCs proved to be very well suited for the
study of quantum transport phenomena. They have been
realized in split-gate devices, for example, which offer the
possibility to tune the effective width of the constriction,
and thus the number of occupied 1D levels, via the applied
bias voltage. The presence of a magnetic field in a QW in-
terrupted by a QD can have quite interesting effects. In
fact, in the ballistic regime, regular oscillations of G(B)
were measured [33] as a function of the increasing mag-
netic field, and the presence of these peaks was discussed,
as providing evidence of an Aharonov-Bohm effect.

Summary – In this paper we want to discuss the issues
mentioned above.

In Section 2 we introduce a theoretical model which
can describe the QW under the effect of a transverse mag-
netic field, and we discuss the properties of the interaction
starting from the unscreened long range Coulomb interac-
tion in two dimensions.

In Section 3 we evaluate the bulk and end critical
exponents. Then we discuss the effects on them due to
an increasing transverse magnetic field. We remark that
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αbulk characterizes the discussed power-law behavior of
the TDOS, while (αend) characterizes the temperature de-
pendence of Gmax, in both the UST and the CST regime.
Finally, we discuss the presence of an intrinsic QD formed
by two QPCs, also by analyzing the correspondence with
the quantized magnetic flux linked together with the cur-
rent flowing in the cavity.

2 Model and interaction

Single particle – A QW is usually defined by a parabolic
confining potential along one of the directions in the
plane [34]: VW (x) = me

2 ω2
dx2. We also consider a uni-

form magnetic field B along the ẑ direction and choose the
gauge A = (0, Bx, 0). In order to diagonalize the Hamil-
tonian for QWs, we introduce the cyclotron frequency
ωc = eB

mec and the total frequency ωT =
√

ω2
d + ω2

c , and
we point out that py = me(vy + ωcx) commutes with the
Hamiltonian

H =
ω2

d

ω2
T

p2
y

2me
+

p2
x

2me
+

mω2
T

2
(x − x0)2, (8)

where x0 = ωcpy

ω2
T me

. The diagonalization of the Hamiltonian
in equation (8) yields two terms: a quantized harmonic os-
cillator and a quadratic free particle-like dispersion. This
kind of factorization does not reflect itself in the separa-
tion of the motion along each axis, because the shift in the
center of oscillations along x depends on the momentum
ky. Therefore, each electron in the system has a definite
single particle wave function

ϕn,ky(x, y) ∝ e
− (x−γωk)2

2σ2
ω hn (x − γωk)

eikyy√
2πLy

, (9)

where hn (x) is the n-th Hermite polynomial, γω = ωc�

ω2
T me

and σω =
√

�

meωT
. Now we are ready to give a simple

expression for the free electron energy, depending on both
the y momentum k and the chosen subband n

εn,k =
ω2

d

2meω2
T

�
2k2 + �ωT

(
n +

1
2

)
,

from which the magnetic dependence of the Fermi
wavevector follows

kF (εF , ωc) =

√
2meω2

T

�2ω2
d

(
εF − �ωT

(
n +

1
2

))
.

Below we limit ourselves to electrons in a single channel
(n = 0) and calculate a field-dependent free Fermi velocity

vF (ωc) =
ω2

d

meω2
T

�kF ≈ ω2
d

meω2
c

�kF , (10)

where the approximation is valid for very strong fields.

Electron-electron interaction – In order to analyze
in detail the role of the e-e interaction, we have to point
out that quasi 1D devices have low-energy branches, at
the Fermi level, that introduce a number of different scat-
tering channels, depending on the location of the electron
modes near the Fermi points. It has been often discussed
that processes which change the chirality of the modes, as
well as processes with large momentum-transfer (known as
backscattering and Umklapp processes), are largely sub-
dominant, with respect to those between currents of like
chirality (known as forward scattering processes) [35–37].

Now, following Egger and Gogolin [37], we introduce
the unscreened Coulomb interaction in two dimensions

V (r − r′) =
c0√

(x − x′)2 + (y − y′)2
. (11)

Then, we can calculate U0(k, ωc), i.e. the Fourier trans-
form of equation (11), obtained starting from the eigen-
functions u0,kF (x, y) and the potential in equation (11).

The fundamental interaction parameter is due to for-
ward scattering between opposite branches, corresponding
to the interaction between electrons with opposite mo-
menta, ±kF , with a small momentum transfer (∼ qc). The
strength of this term U0(qc, ωc) ≡ g2 is

U0(qc, ωc) ≈ 2U0

×
(∣∣∣ln (qcσω

4

)∣∣∣ − γe

2
− γ2

ωkF
2

σω
2

f

(
γ2

ωkF
2

σω
2

))
, (12)

where U0 is a constant parameter, γe is the Euler Gamma
constant, f is expressed in terms of generalized hypergeo-
metric functions.

As we discussed above, the backscattering process,
which changes the chirality (with strength g1, correspond-
ing to transferred momentum 2kF ), can be neglected. This
approximation becomes more suitable, when the magnetic
field increases, as we show in Figure 1.

3 Results

The bulk and the end critical exponents – The αBulk in a
QW has to be 10 times larger than in a CN (i.e. αQW ≈ 4)
and this is due to a difference in the Fermi velocity. Let
us recall that a typical Single Wall CN, with a longi-
tudinal length LCN ≈ 3–10 µm and a radius RCN =
1.38 nm, has critical exponent α ≈ 0.3–0.4 correspond-
ing to gCN

2 ≈ 1–1.5 × 102vCN , where vCN = 8 × 105 m/s
is the Fermi velocity in a CN, as it can be obtained by
applying equation (2) (K ≈ 0.18 for a Single Wall CN of
length 3 µm [36]). For a comparison of our model for a
QW with the related measurements, we have to calculate
the frequency ωd starting from the width, R, of the QW
as ωd ≈ �(2π)2

m0R2 , where we have to consider the effective
mass (m0 = 0.067me for AsGaAs).

A semiconducting QW made in AsGaAs 2DEG
has typically a length L ∼ 10–100µm and a width
20–30 nm. Thus we obtain �ωd ≈ 20–40 meV. The Fermi
velocity can be obtained, after introducing the Fermi
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Fig. 1. Scaling of the interaction with the magnetic field. The
forward scattering (g2) term (solid line) is reduced by the pres-
ence of the magnetic field (ωc), but this effect is more consis-
tent for the backscattering (dashed line) which vanishes quickly
with the increasing of ωc. Each value of g(ω) is renormalized
with respect to the corresponding value at zero magnetic field
(ωc = 0).

wavevector kF corresponding to a half filled subband, as
vF ≈ 103–104 m/s.

Now we consider the QW in reference [29] with a longi-
tudinal length L = 0.1 mm and transverse size R = 5 nm.
Because the strength of the e-e interaction, g2, depends
on the logarithm of the ratio between the transverse and
the longitudinal dimensions, we can conclude that it is
rather the same for this QW and a typical Multi Wall
CN (gQW

2 ≈ gCN
2 ). However, the large difference between

the corresponding Fermi velocities (a factor ∼103) yields
strong effects on the ratio g2/vF . From the introduction of
the experimental parameters for the QW in reference [29]
it follows αbulk ≈ 3–4, in good agreement with experi-
mental results and more then 10 times larger than the
one measured in CNs.

However, by introducing the expression from equa-
tion (12) into equation (2), it follows that the bulk crit-
ical exponent is reduced by the presence of a magnetic
field, as we show in Figure 2. We can conclude that the
magnetic field alters the bulk exponent: on the one hand,
the localization of the edge states is responsible for the
reduction of αbulk, because of the attenuation of the for-
ward scattering between opposite branches; on the other
hand, also the Fermi velocity is renormalized, as shown in
equation (10). This prediction can be extended to αend,
calculated following equation (5), as we show in Figure 2.

The intrinsic quantum dot – When there are some ob-
stacles to the free path of the electrons along a 1D device
(e.g. QPCs, which shrink the width of a QW), a scat-
tering potential has to be introduced in the theoretical
model. Details about calculations concerning the presence
of obstacles in a 1D electron systems were discussed in ref-
erences [6,17], where the problem is mapped onto an effec-
tive field theory using bosonization and then approached
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Fig. 2. Critical exponents versus magnetic field for a QW:
αBulk is calculated following equation (2); αend is calculated
following equation (5). The magnetic field yields a strong re-
duction of both critical exponents. We can consider ωc/ωd =
0.5 corresponding to B ≈ 0.5 T for the QW in the experiment
of reference [29].

using a RG analysis. The presence of two barriers along a
QW at a distance d can be represented by a potential

VB(y) = UB

(
f

(
y +

d

2

)
+ f

(
y − d

2

))
,

where f(y) is a square barrier function, a Dirac Delta func-
tion or any other function localized near y = 0. In general
we can analyze the single particle transmission in the pres-
ence of a magnetic field, t(εF , B), by identifying the off-
resonance condition (|t| = 0), where electrons are strongly
backscattered by the barriers, and the on-resonance con-
dition (|t| = 1), where the scattering at low temperatures
is negligible.

Now we can discuss some details of the results ob-
tained for a double square barrier: the magnetic depen-
dence of the peaks in the transmission is shown in Fig-
ure 3 (top), where we report the transmission T = |t|2
versus ωc, which exhibits a magnetically tuned transport
through the QW. In particular, assuming that there are
two identical, weakly scattering barrier at a distance d,
the transmission is non-zero for particular values of kF ,
so that cos(kF d) ≈ 0.

It is quite interesting to analyze the correspondence
between the resonance peaks in the conductance and the
geometry of the current vector field (see Fig. 4) for strong
magnetic fields, starting from the usual resonance condi-
tion: the nth peak corresponds to kF d ≈ nπ.

Some papers about the ballistic transport in the pres-
ence of a magnetic field [33] discuss the presence of the
conductance peaks, interpreting it as the evidence of an
Aharonov-Bohm effect. We can explain that, by con-
sidering the localization of the edge states in the wire
(〈x〉 = ±γωkF ), so that the path of the electrons en-
closes a surface S = 2γωkF d. In the limit of strong B
(γω ≈ (�)/(meωc)), we obtain a value for the flux of B in
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Fig. 3. (Top) Ballistic conductance as a function of the mag-
netic field: the use of a double square barrier model, for the
cavity formed by two QPCs, allows for the exploration of the
backward scattering oscillations due to the magnetic field. We
observe the appearing of resonance peaks, as a function of
the magnetic field. (Bottom) Magnetic field dependent con-
ductance obtained for 3 different values of the temperature,
following the CST theory (the solid line corresponds to the
top panel with the lowest temperature T0 while the dashed
line corresponds to a higher value of T ≈ 1.2T0). The observed
reduction of the peaks height corresponds to the predicted re-
duction of αend with B.
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Fig. 4. The current vector field between the barriers, in the
resonance and the off resonance conditions, for two square bar-
riers, in the presence of a magnetic field.

the presence of a transmission peak

ΦS(B) ≈ B(2γωkF d) ≈ 2c�

e
kF d ≈ n

2ch

e
= nΦ0.

This can also be seen by analyzing the presence of an
integer number of “circles of current”, between the two
barriers, in correspondence to the peaks (see Fig. 4 left).
In Figure 4 (right) we show the off resonance behaviour
corresponding to |t| = 0. In both Figures 4 each circle of
current represents one electron which brings a quantum
of magnetic flux Φ0.

Following the theoretical approach to the TLl in the
presence of two barriers [4,17,18,20], we can calculate the
resonant scattering condition, which can give rise to per-
fect transmission even for K < 1. It corresponds to an
average particle number between the two barriers of the
form ν + 1/2, with integer ν, i.e. the QD is in a degener-
ate state. If interactions between the electrons in the QD
are included, one can recover the physics of the Coulomb
blockade [4,17,18,20]. The main difference is due to the
temperature dependence of the conductance Gmax. For
the calculation of this dependence we can follow the CST
mechanism recently proposed [15], in order to explain the
unconventional power-law dependencies in the measured
transport properties of a CN. In this theory the electrons
tunnel coherently, from the end of one CN lead to the
end of the other CN lead, through a quantum state in the
island. In this picture, the island should be regarded as
a single impurity. The power law dependence of the con-
ductance due to this tunneling mechanism is reported in
equation (7) and is shown in Figure 3 (bottom).

4 Conclusions

In this paper we showed how the presence of a magnetic
field modifies the role played by both the e-e interaction
and the presence of obstacles in a QW.

The first prediction that comes from our study is that
the bulk critical exponent αbulk of a semiconductor QW
should be 10 times larger than the one measured in a
typical CN according to the experimental results. We also
predict a significant reduction of both critical exponents
as the magnetic field is increased. The magnetic dependent
value of αend determines the temperature dependent G in
the sequential tunneling regime.

Our second prediction concerns the presence of some
peaks in the small bias conductance versus magnetic field
when two QPCs in are put in series along a QW, form-
ing an intrinsic QD (see Fig. 3). The presence of magnetic
field dependent peaks in the transmission can be used, in
order to construct a ”magnetic field transistor” also in the
temperature regime corresponding to the Luttinger liquid
(a room temperature transistor, if we look at the device
proposed in Ref. [15]). Thus we take into account a semi-
conducting QW made in AsGaAs 2DEG, which typically
have a length L ∼ 10–100µm and a width 20–30 nm, i.e.
�ωd ≈ 50–100 meV. The corresponding magnetic energy
�ωc/B ≈ 15 meV/T is comparable with the confining one
�ωd, while the strong renormalization of the effective elec-
tron mass reduces by a factor 100 the Zeeman spin split-
ting. If we fix two QPCs at a distance d ≈ 200–250 nm, we
predict that some peaks (about 5–10) have to be observed
in the conductance, for values of the magnetic field be-
tween 0 and 4 T. The effects of very strong magnetic fields
(much larger than those considered here) can dramatically
change the behaviour of the system, as we showed in our
previous paper [30], where we discussed also the spin po-
larization in QWs.

Our third result concerns the two different explana-
tion for the peaks in the conductance. The discussed on-
resonance condition in the TLl approach corresponds to
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the presence of an average particle number, ν, in the cav-
ity formed by the QPCs. On the contrary, the presence
of a quantized circulating current, corresponding to the
conductance peaks, was read as providing evidence of an
Aharonov-Bohm effect in the ballistic regime. Thus we
suggest that each electron in the QD has to bring a mag-
netic flux quantum.
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